mIRage IR microscope

The field of IR spectroscopy just changed!

Sub-micron spatial resolution

Nondispersive spectra on thick samples

Non-contact measurements

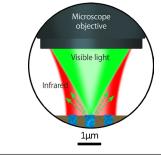
Sub-micron IR spectroscopy and imaging

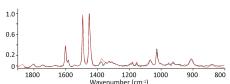
Mirage overcomes the IR diffraction limit using Optical Photothermal Infrared (O-PTIR) Spectroscopy, in which a tunable pulsed mid-IR laser induces photothermal effects into a sample surface. The thermal expansions are measured using a visible probe laser focused on the sample.

Transmission FTIR quality spectra in non-contact reflection mode

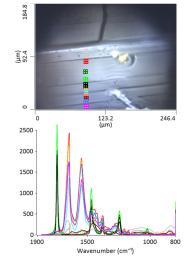
Measurements are collected quickly and easily without need for sample contact, unlike ATR spectroscopy. Additionally, O-PTIR provides spectra comparable to FTIR, without the dispersive artifacts observed in ATR. By operating in reflection mode, the need for thin samples is also eliminated.

Wavelength independent spatial resolution


Spatial resolution is determined by the diffraction limited spot size of the visible laser (around 500 nm), independent of the IR wavenumber.


Wide range of applications

Mirage provides unique data for numerous material types, including:


- Polymers
- Cells
- Micro-electronics

- Bone
- Pharmaceutical
- Cosmetics

Polystryene spectra (red) collected on Mirage compared against the KnowitAll $^{\text{IM}}$ spectral database (black).

Seven layer commercial food packaging film. The spectra, collected directly off the epoxy-embedded stub, show distinct layers within the sample.

SPECTROSCOPY CORP